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Abstract

More of the world’s activity is being recorded by digital ser-
vices, which has resulted both in an increasingly stringent
compliance and regulatory environment for data storage and
attacks on that storage that are growing in sophistication and
subtlety. This paper describes immudb, an append-only gen-
eral purpose database that, in concert with other security best
practices, provides tamper evidence and irrepudiable trans-
actions while maintaining performance appropriate for high-
volume applications.

immudb uses Merkle Hash Trees (MHTs) to create digests
that represent the state of the entire database at any given time.
Together with cryptographic proofs that demonstrate that 1) a
given element has been successfully inserted into the database
and 2) a database is consistent between two points in time,
these provide robust guarantees about the validity of the state
of the database.

Simultaneously, immudb provides data read access using
versioned key-value and insertion order APIs that enable
immudb to serve in a broad range of capacities that would
otherwise use less secure alternatives.

1 Introduction and Motivation

In July 2020, Mandiant Solutions, a cybersecurity research
company, released a report describing a Russian hacking cam-
paign against targets in Poland, Lithuania, and Latvia that
had been ongoing since at least March 2017 [27]. The hack-
ing group(s) associated with this campaign, which Mandiant
entitled "Ghostwriter", had, among other attack vectors, pene-
trated the content management systems that support various
news outlets’ web publications in the target nations. Sub-
sequently, the attackers had posted fabricated news articles
intended to sway public opinion against the North Atlantic
Treaty Organization (NATO), in an apparent bid to weaken its
geopolitical influence in three nations that were either former
Soviet Socialist Republics or, in the case of Poland, a member
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of the Warsaw Pact. Rather than simply post new fraudulent
articles, which would have been detected quickly due to the
recency bias of the news cycle, the hackers replaced older
articles which would not appear on the front pages, but would
be returned in searches for, e.g. "NATO."

While this attack is significant in that it features a state-
sponsored actor, it belongs to a larger group of threats in which
attackers, whether internal or external to an organization, gain
access to a data store and modify or delete data, instead of
or in addition to exfiltrating it for other purposes. This can
take myriad forms: modifying transaction histories to remove
debits, tweaking clinical trial research data, deleting receipts
or inflating invoices in support of theft, altering navigation
waypoints, changing grades, etc.

Simultaneously, the burden of regulation for data retention
is heavy. Major sets of regulations that impose data secu-
rity rules include but are certainly not limited to HIPAA [5]
(healthcare data), FERPA [12] (student records), FCRA [16]
and its amendment FACTA [17] (consumer credit), SOX [13]
(institutional accounting), and 21 CFR § 11 (pharmaceuti-
cal trial data), and so forth. The burden is also continuously
increasing, with recent years seeing the European Union en-
act the General Data Protection Act [7], New York enact the
SHIELD act [14], and California enact the California Con-
sumer Privacy Act [4]. Many of these regulations levy specific
rules requiring audit trails for data modifications.

Together, these two coinciding forces strongly indicate the
need to create a new class of database that is auditable, irrepu-
diable, and tamper-evident by design rather than attempting
to retrofit existing database solutions with additional instru-
mentation'.
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Figure 1: An example of a classic Merkle Hash Tree. Each
data element x; is hashed and put into leaf node /; o = H(x;).
Each pair [; o, ;11 0, % € Z is concatenated, hashed, and placed
in interior tree node /; 1. Each successive interior tree node
consists of the hash of the left-to-right concatenation of the
value of its children until a single root node Iy 4,d = log, n is
created, representing a digest of the entire tree’s state.

2 Background

2.1 Merkle Hash Trees

In his 1979 thesis [28] and again in a 1987 paper [29], Ralph
C. Merkle described what have come to be called Merkle
Trees or Merkle Hash Trees (MHTs), as illustrated in Figure
1. These trees were conceived as digital signatures, attested
to in a public shared file, to some underlying data. The pri-
mary motivation of the signature scheme at the time was
to provide cryptographically secure signatures under certain
circumstances while avoiding the computational expense (sig-
nificant at the time) of using asymmetric key encryption by
using computationally cheap hash functions instead. A con-
temporary understanding of the operation of these trees is as
follows”:

1. Some n data elements xy through x, is presented for
signature. In Merkle’s original conception, these are
groups of message bits. For simplicity we assume that n
mod 2 = 0.

IThe evaluation of such approaches is outside the scope of this paper,
but see [30,31] for some examples. Generally, these are not performant and
require an external trusted party.

2The notation here is not perfectly self-documenting, but follows [25] for
consistency.

2. Each of these n elements is digested using a hash func-
tion H, and we refer to each H(x;), 0 <i < n as X; for
notational convenience. These X; values form the leaves
of the MHT, each X; contained in a leaf node /; o denot-
ing its index i and its depth at the leaf layer, 0. More
generally, for each node I; ;, i is the index of the leftmost
element in the subtree rooted at /; ;, and j is the node’s
depth measured in path traversals up (i.e toward the root)
from the leaf layer.

3. Assuming a binary tree, each pair of hashes at the leaf
layer are concatenated and hashed, so Ip ;1 = H(Ip0||110)-
We thus assemble Iy 1, 1, ... I,—1,1 into % trees, each
of which is a hash of the concatenation of the hashes
of two original elements. We repeat this process I, =
H(Io,1||I2,1) and so on until we create a single tree with
root node o jog, -

The resultant tree has several properties that will prove to
be important. First, the root node Iy jog,, is a digest of the
entire tree, including all of the original data elements xg...x,;
thus the alteration of any data element will alter the values at
the roots of any subtree containing that value, including the
overall tree. Second, the path from the root to any given leaf
I; o is unique. Third, given a data element x;, and a tree root
value, it is possible to construct a proof that x; is in the tree
using a series of interior node values.

Figure 2: An inclusion proof for some tree with root Iy > and
data element x;. The dashed circle indicates a derivable value;
heavy circles are the values that must be provided to prove
that x; was used in the construction of the tree (specifically as
the ith element).

2.2 Inclusion Proofs

Figure 2 illustrates the procedure for generating a proof of
inclusion. The value of an MHT’s root is the hash of the left-



to-right concatenation of its children’s values, and each of its
children’s values are the left-to-right concatenation of their
children’s, and so forth. In the case of a complete binary tree
with depth 3 and 4 data elements, if we wish to prove the
inclusion of x; we need to provide the missing information to
allow someone to generate Iy > given xj.

loo =H(Io,1]|12,1)
=H(H(loo)||11.0)[|12,1)
=H(H(lo,0)|[H(x1)|[l2,1) 1)

The elements needed to show that I ; (and by extension
x1) was used at its indicated position to generate the tree
rooted at Iy » are thus sibling Iy o, its parent’s sibling /> 1, and
the root. Thus the inclusion proof is the set {lo0,5,1,l02}.
More generally, for a given x;, the inclusion proof set is its
sibling and the sibling of each parent moving towards the root,
which suffice to calculate the root from x;. Proof validation
is merely the calculation of the analog to Equation 1 above.
This demonstrates an additional important property of the tree
- inclusion proofs do not need to contain any data elements,
preserving privacy of those data.

2.3 Mutable Merkle Hash Trees

Merkle’s original description of MHTs was intended for use
as part of a signature scheme, with a static message agreed
upon by two parties out of band. Crosby and Wallach [25]
and, independently, Laurie et al. [6], proposed procedures
to extend MHTs to append-only data structures that main-
tain MHTSs’ desirable security invariants. In these systems,
as some element x;, is added to a tree of n elements, it is ap-
pended to the tree and hashes toward the root recalculated, as
illustrated in Figure 3.

Thus, rather than a complete recalculation of the tree, re-
sulting in O(n) hashes, only O(log, n) hashes are recalculated
on insertion to a tree of size n.

Both Crosby and Laurie make the modification of prepend-
ing a byte indicator to the hash input function of 0x00 if the
hash result is a leaf and 0x01 if it is an internal node. This
serves to fend off second preimage attacks in which an at-
tacker could present a tree in which nodes at some depth> 0
are presented as leaves, with their values being the concate-
nated hashes of their actual children, producing the same root
value as the original valid tree, but rendering the data garbled.

2.4 Consistency Proofs

The introduction of growing MHTs also introduces a new
class of incremental consistency proofs that demonstrate that
some tree root value I, is a digest of a tree built from a valid
superset of some other tree whose digest is . That is, I, con-
tains /,, plus additional data elements. Such a proof consists
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Figure 3: Mutation strategies for MHTs by Crosby (top) and
Laurie (bottom). Crosby mutates MHTs by having all new
insertions at depth O and fills in intermediate nodes, represent-
ing empty subtrees with [J. Laurie adds leaf nodes parsimo-
niously, not creating any intermediate nodes but appending
leaves as near the root as possible. Thus, the left and right
subtrees of a root in Laurie’s scheme may have significantly
different depths.

of the interior values in I, nearest the root that also exist in I,
sufficient to calculate I, as seen in Figure 4.

2.5 Root Signing

The MHT regime described above assumes a
client/server/auditor model in which one or more clients
submit their data to a server holding an authoritative copy of
a mutable MHT and optionally request proof that their data
was successfully inserted. One or more auditors periodically
test the consistency of the MHT by demanding proofs.

If a client or auditor (collectively, "agents") receives a proof
that does not correctly compute, it can immediately surmise
that the server is misbehaving. However, said agent cannot
necessarily prove this misbehavior to any other agent; depend-
ing on what updates and proofs have been seen by another
agent, the server could claim that the reporting agent is mis-
behaving by falsely claiming that the server is misbehaving
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Figure 4: Using Crosby’s scheme, the one-element tree at
the left can be proved to be consistent with the tree on the
right by providing the minimal set of leaves and nodes that
proves the left tree can be calculated from the right (/p o in this
case, which can be used to calculate I 1, which is different
from I, ), plus I; o which can be used to calculate 1671 , and
L which, with the computed 1671, can be used to calculate
the root of the right tree. The necessary nodes are in heavy
circles.

by offering a forged proof.

To avoid this situation, both Crosby and Wallach and Laurie
et al. specify that the server should sign the root values it
advertises, and that such signed roots should be published
broadly to deter deniability. If root values are signed, any
agent can demonstrate that any proof was legitimately offered
by the server.

2.6 Security of Mutable Merkle Trees

Given the components above, the resulting mutable MHT has
strong security properties:

1. The root digest represents the state of the full MHT, and
if any underlying data element is changed, the associated
hashes will also change, making MHTs tamper-evident.

2. The append-only structure of the tree means that an at-
tempted deletion of a data element will cause significant
and obvious changes to the tree. Thus any consistent
MHT guarantees irrepudiability of previously-entered
data in a given position.

3. The server and its underlying data do not have to be
trusted; each client can verify that her data was inserted
and audit that the current state of the MHT still contains
that data at any time. Signed roots represent an attestation
by the server that can be used to prove misbehavior to
other agents.

Proofs and further formal examination of these and other
properties can be found in [6,23,25,26].

2.7 Asymptotic Performance of Mutable
Merkle Trees

In addition to their security properties, mutable binary MHT's
have well-characterized properties with respect to worst-case
performance in space and time.

Space Such MHTs grow as O(n). Specifically, an MHT’s
space consumption for storage of n items is 2n x 32 bytes
(the number of nodes x the size of a SHA-256 hash),
plus necessary implementation-specific overhead. This
does not include the space necessary to store the data
elements, which will depend on the size of those data.

Depth The length from a given leaf to the root of an MHT
grows as O(log, n).

Insertion Time The time consumed to append an item to an
MHT grows as O(log, n).

Lookup Time The time consumed to find some item in-
serted ith in an MHT grows as O(log, n).

Proof Time The time consumed to generate or verify a proof
of inclusion or consistency grows as O(log, n).

Each of these asymptotic limits is for a basic implemen-
tation of mutable binary MHTs, and can be improved with
additional optimizations, some of which are discussed in Sec-
tions 3.2 and 5.
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Figure 5: An overview of the immudb architecture.

immudb is an extension of mutable MHTSs as described
above which presents a general-purpose database backed by
a mutable MHT as seen in Figure 5.



3.1 The immudb Server Process

The immudb server process performs the overall management
of immudb’s MHT's and manipulation of associated data. The
server process contains a warden thread that continuously re-
computes constituent MHT values from the underlying data to
guard against corruption. It also contains the proof generation
and root signing mechanisms.

The server exposes an API via grpc [10] to which clients
and auditors connect in order to authenticate, insert and fetch
data, perform monitoring, and demand inclusion and con-
sistency proofs. The grpc API is optionally secured at the
transport layer using mutual TLS [18].

immudb uses FIPS certified SHA-256 [8] and ECDSA [9]
for MHT hashing and root signing, respectively.

The server process connects to a storage layer which man-
ages the physical persistence of inserted data and the associ-
ated mutable MHTs.

3.2 The immudb Storage Layer

immudb’s storage layer includes one or more application
databases and the special sysdb database and MHT which
store the server’s own metadata. Each database is comprised
of the store, containing the various data elements x;, and a
supporting MHT protecting the store against undetected tam-
pering.

immudb’s storage layer is designed as a key-value store,
where each key-value pair (k,v) is stored as a data element x;.
The pair, rather than just the value, is hashed in the MHT.

The storage layer maintains indexes to aid in accessing
data:

* An insertion order index i — x; is maintained to provide
random access by insertion order. This index is also
used by the server’s proof generation task and corruption
warden. This index improves lookup of a data element
from O(log, n) for a basic binary MHT to O(1).

* A key index k — {vx, vy, ... }is maintained to provide ac-
cess to the current and historical values of given key k.
As immudb is an append-only database, updates to a
value associated with a given key are modeled as inser-
tions of new values for that key. Clients may retrieve the
most recent value or the list of historical values. This
index improves the lookup time of all data elements
with the key k from a complete table scan requiring
O(nlog, n) for the naive case or O(n) by using the index
above to O(|{v|k — v}|), i.e. growing as the number of
values v mapped to by key k.

* An MHT node index i, j — I; ; providing expedient ac-
cess to the MHT tree nodes and leaves®. This index

3immudb’s MHT implementation generally follows [6], except that non-

full trees maintain all their leaves at depth 0. This leads to the nuance that

tightens the constant factor of various O(log,n) tree
algorithm runtimes including insertion time and proof
generation and verification by eliminating tree traversal
operations.

At present the immudb storage layer uses Badger [3] as its
storage engine, but the immudb server and storage layer can
be considered engine-agnostic. A lighter-weight engine is cur-
rently under development which changes none of immudb’s
properties except to improve performance.

3.3 The immudb API

The immudb API presents various methods for setting and
fetching data. Core methods include:

get (Key k) Returns the most recent key-value pair (k,v)
associated with key k.

safeGet (Key k, int i) As above, but also demands in-
clusion proof of (k,v) and consistency proof between
the latest MHT known to the server and the tree as it
appeared after the insertion of x;.

getByIndex (int i) Returns the key-value pair (k,v) in-
serted ith.

history (Key k) Returns a list of all key-value pairs (k,v)
associated with k.

set (Key k, Value v) Adds the key-value pair (k,v) and
adds its hash at the next available location in the MHT.

safeSet (Key k, Value v, int i) As above, but also
demands inclusion proof of (k,v) and consistency proof
between the MHT as it stands after the insertion of the
requested element and the tree as it appeared after the
insertion of x;.

These API calls provide flexibility when integrating
immudb into new or legacy applications. Software that stores
key-value pairs works without further effort. Applications
making use of time-series data, e.g. tick data, can store these
data by "overwriting" the key and then can retrieve the tick-
stream by using history (). Document-oriented data oper-
ations can store documents as the value v in the (k,v) pair,
though filtering and manipulation of the documents in the
store will have to be done at the application layer at present.

immudb also supports further methods in support of proofs:

consistencyProof (int i) Returns the consistency proof
between the version of the MHT immediately following
the insertion of x; and the current tree

inclusionProof (int i) Returns the inclusion proof for
the element x;.
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Figure 6: safeGet () fetches key-value data together with
cryptographic proofs.

Figure 6 provides an illustration of a client’s use of
safeGet (). A client calls safeGet (k), which is syntactic
sugar for safeGet (k, r) where r is the most recently ver-
ified root known to the client. The server then returns the
key, value, and inclusion and consistency proofs. The client
checks the inclusion and consistency proofs and, if the proofs
compute correctly, the client updates its last validated MHT
root with that from the proofs.

Each auditor and client is responsible for maintaining its
own copy of the last valid MHT state it has seen and pe-
riodically validating the server’s MHT against its own and
updating its internal state or announcing a failure accordingly.

Inclusion and consistency proofs have the desirable prop-
erty that said proofs do not include data elements from the
database, but only their hashes. As such, although multiple
users may use the same database, under an appropriate access
control regime, no user will be sent data to which she does
not have access.

3.4 immudb Defense in Depth

As with any service, security best practices are necessary
in order to ensure safe operation. While the mutable MHT's
described in this paper are robust against silent tampering,
they provide no guarantees beyond standard databases with
respect to data destruction, corruption, or pilfering that is not
meant to be covert.

Appropriate network segmentation and access control
should be practiced. Further, it is strongly recommended that

leaves can have parents at depths > 1, but this is abstracted from the end user
and does not change any security properties.

the immudb server run on a separate machine (physical or
virtual) from any clients to ensure that the only interaction the
clients have with the server or its data is through the exposed
grpc APL

Root signing provides stronger guarantees of irrepudiabil-
ity, but are only useful in applications in which agents may be
assumed to work adversarially. As ECDSA signing is compu-
tationally expensive, using immudb without signed roots may
offer greater throughput in cases where clients who detect a
fault in the database may be taken at their word.

Section 5 provides a look ahead at mechanisms under de-
velopment that may further harden immudb and applications
that interface with it against attack.

4 Applied immudb

The example in Section | may appear trivial and the result of
poor security on the part of small media operators. However,
the threat of data manipulation is in the wild, often as part of
long-term breaches resulting in significant losses.

FireEye reported in October 2018 on a campaign that uses
data manipulation as part of an attack’s critical path. Since at
least 2014, the North Korean state sponsored APT38 threat
group [2] has, based on public reporting, stolen some 1.1
billion USD from various banks using the SWIFT global
financial transaction network [19].

In a well-orchestrated series of attacks, APT38 used a com-
bination of spearfishing and other social engineering attacks,
malware, and abuse of various security vulnerabilities to enter
the networks of financial institutions. Once inside, APT38
would spend significant amounts of time (155 days on aver-
age, up to 678 days, per FireEye) gathering intelligence about
the network and computing environment, and then insert large
transactions into the SWIFT network bound for accounts un-
der APT38’s control at banks in other nations with poor fiscal
oversight.

As part of a robust strategy for evading detection until
funds had been delivered, the DYEPACK malware toolkit that
APT38 deployed would directly execute SQL commands on
the Oracle database backing the SWIFT transaction server
and delete or modify fraudulent transactions made, as verified
by forensic analysis of live copies of the malware [19,21,22].

This simple step prevented the examination of outgoing
SWIFT transactions that would have immediately flagged the
activity for review.

In such a system, immudb could have been deployed in
one of two ways. First, an immudb client listening to the
Oracle database’s Change Data Capture (CDC) facility [1]
to record all database activity could have piped the CDC
output to an immudb server, itself secured against corruption
by multiple auditors distributed throughout the network. The
immudb database would then have an irrepudiable and tamper-
evident record of DYEPACK’s updates and deletes, and action
could be taken. This solution, however, while necessary in



many scenarios with legacy applications, is far from ideal.
In the specific case of DYEPACK'’s attack against SWIFT
servers, DYEPACK could simply have dropped the relevant
CDC tables from the Oracle database, disabling CDC entirely,
and then re-created them when the deletions and edits were
complete.

The more secure if higher-effort mitigation would be to
replace the Oracle instance with immudb. immudb provides
no APIs for modification and deletion, so deletion of records
from a command-line interface as was done with Oracle is
not possible. Modification of data directly on disk is possi-
ble, but such modification would be quickly detected by the
continuously-running server corruption warden, as well as by
deployed auditors.

Work described in the following section will serve both to
harden immudb deployments in such situations and reduce
the burden of application development.

5 Future Work

immudb today represents a significant leap forward in irre-
pudiable, tamper-evident, auditable data storage. Additional
features that are planned or in development to make immudb
both more usable, useful, and performant include, but are not
limited to:

Drivers - Drivers written for the most-used languages
to allow the native use of immudb with more new and legacy
applications.

SQL-Like Querying - Support for a SQL-like query
language to allow more sophisticated server-side fetching of
results and an easier transition to immudb from less secure
legacy datastores.

Improved Storage Engine - Creation of a engine
specifically designed to efficiently support the data structures
underlying immudb.

Caching - Support for configurable caching based on
application needs. As past entries and hashes within frozen
subtrees are functionally immutable in immudb, these lend
themselves to mature techniques for replication and caching
of static data.

High Availability and Sharding - Support for config-
urable replication and sharding in support of load balancing,
fault tolerance, and availability. The uniformly random output
of the SHA-256 hashes used by immudb in particular make
auto-sharding based on hash prefix ranges straightforward
and probabilistically load-balanced.

External Security Keys - Support for hardware de-
vices containing cryptographic keys, e.g. Universal 2nd

Factor (U2F) [15] devices from Nitrokey [11] or Yubico [20].

Encryption at Rest - Following on from the immudb-
specific storage engine, support for data encryption at rest at
the database server level to complement immudb’s mutual
TLS encryption in transit.

Gossip Protocol - Support for a gossip protocol among
auditors and clients to transparently and continuously detect
and flag suspected tampering.

GPU Acceleration - Support for acceleration of immudb’s
SHA-256 hashing and ECDSA signing using commodity
GPU hardware. Acceleration of cryptographic primitives
makes use of the wide data bus of GPUs compared to CPUs
and can, in cases of transactions that trigger large numbers
of simultaneous hash calculations or signatures, provide
significant improvements in throughput.

GDPR and CCPA Compliance - Compliance with
the European Union’s General Data Protection Regulation
(GDPR) [7] and the California Consumer Privacy Act [4].
The GDPR mandates certain circumstances in which data
must be deleted. While this might appear challenging
for append-only databases such as immudb, because the
coherence of the underlying MHT depends upon the hash
of a given value rather than the value itself, the underlying
data may itself be deleted under a regime that appropriately
audits the data and records (e.g. in a companion immudb
metadatabase not subject to deletion or redaction regulations)
which entries have been removed under what authority.

6 Conclusion

In this paper we have described the design and implementa-
tion of immudb, a performant append-only general-purpose
database that provides strong tamper-evidence and irrepudia-
bility of inserted data.

Starting with Merkle Hash Trees and subsequent work by
Crosby and Wallach as well as the Certificate Transparency
standard proposal by Laurie et al., we expand upon the nar-
rowly defined prior art by providing a practical implementa-
tion with the novel extension to a general-purpose database
usage metaphor.

Correctly deployed in conjunction with standard network
and application security best practices, immudb provides de-
fense against undetected insertion, mutation, or deletion of
sensitive data. The cryptographic digest of the database state
allows regular and continuous auditing without the computa-
tional expense of continuous scans of the state of the database,
and optional server-side signing of these digests allow audi-
tors to demonstrate authoritatively when the server’s data has
been tampered with.



The properties of immudb make it appropriate for use in a
variety of industry siloes in which the correctness of data and
resistance against undetected post hoc modifications is crucial.
The gamut of use cases is extensive, including financial ledger
compliance, electronic health records, passport and document
control systems, scientific data records, source code validation,
and so forth. We believe that the broad-scale application of
immudb has the potential to shift the entire security landscape.
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